-2x^2+3x-5=-10

Simple and best practice solution for -2x^2+3x-5=-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x^2+3x-5=-10 equation:



-2x^2+3x-5=-10
We move all terms to the left:
-2x^2+3x-5-(-10)=0
We add all the numbers together, and all the variables
-2x^2+3x+5=0
a = -2; b = 3; c = +5;
Δ = b2-4ac
Δ = 32-4·(-2)·5
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-7}{2*-2}=\frac{-10}{-4} =2+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+7}{2*-2}=\frac{4}{-4} =-1 $

See similar equations:

| 84/2x=7 | | 5^(x-1)=0.04^2x | | 3x-4=-3+4 | | 7x+25=7+4x | | 2d-19=18+10d-d | | x+65+x+10+x=180 | | 16x=60+x | | 5+2(x-4=4x-7 | | 11+9n=6n=+13 | | P(e)=7 | | H=-16t+18t+5 | | (4x+1)(9x-3)=180 | | -3+v=3/5 | | 25^x+5^(x+1)=50 | | 25^2+5^(x+1)=50 | | x+75+x-9=90 | | -22=-1+7d | | 25^2+5^x+1=50 | | X+36=5x-12 | | 3/4=6/m-2 | | 24+4z=-4 | | (8x-5)(4x-19)=180 | | 36/u=4 | | 6n-1=5n+12 | | 84+65+58+n=180 | | 14v+16=5v-30v+5v=45 | | 60+50+x+81=180 | | -10-7x=15 | | 3x-15=-35 | | 47x35x=12 | | (15+x)+(10+x)=240 | | -1=15+2b |

Equations solver categories